Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Virulence ; 14(1): 2258057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743649

RESUMO

Host innate immunity plays a pivotal role in the early detection and neutralization of invading pathogens. Here, we show that pseudokinase mixed lineage kinase-like protein (MLKL) is required for host defence against Streptococcus pluranimalium infection by enhancing NLRP3 inflammasome activation and extracellular trap formation. Notably, Mlkl deficiency leads to increased mortality, increased bacterial colonization, severe destruction of organ architecture, and elevated inflammatory cell infiltration in murine models of S. pluranimalium pulmonary and systemic infection. In vivo and in vitro data provided evidence that potassium efflux-dependent NLRP3 inflammasome signalling downstream of active MLKL confers host protection against S. pluranimalium infection and initiates bacterial killing and clearance. Moreover, Mlkl deficiency results in defects in extracellular trap-mediated bactericidal activity. In summary, this study revealed that MLKL mediates the host defence response to S. pluranimalium, and suggests that MLKL is a potential drug target for preventing and controlling pathogen infection.


Assuntos
Armadilhas Extracelulares , Inflamassomos , Infecções Estreptocócicas , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases/genética , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo
3.
Sci Rep ; 13(1): 2137, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747074

RESUMO

Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is a frequent cause of infections, including bacteraemia and other acute diseases in adults and immunocompromised individuals. We developed a novel system to study GBS within human monocytes to define the co-transcriptome of intracellular GBS (iGBS) and host cells simultaneously using dual RNA-sequencing (RNA-seq) to better define how this pathogen responds to host cells. Using human U937 monocytes and genome-sequenced GBS reference strain 874,391 in antibiotic protection assays we validated a system for dual-RNA seq based on measures of GBS and monocyte viability to ensure that the bacterial and host cell co-transcriptome reflected mainly intracellular (iGBS) rather than extracellular GBS. Elucidation of the co-transcriptome revealed 1119 dysregulated transcripts in iGBS with most genes, including several that encode virulence factors (e.g., scpB, hvgA, ribD, pil2b) exhibiting activation by upregulated expression. Infection with iGBS resulted in significant remodelling of the monocyte transcriptome, with 7587 transcripts differentially expressed including 7040 up-regulated and 547 down-regulated. qPCR confirmed that the most strongly activated genes included sht, encoding Streptococcal Histidine Triad Protein. An isogenic GBS mutant strain deficient in sht revealed a significant effect of this gene on phagocytosis of GBS and survival of the bacteria during systemic infection in mice. Identification of a novel contribution of sht to GBS virulence shows the co-transcriptome responses elucidated in GBS-infected monocytes help to shape the host-pathogen interaction and establish a role for sht in the response of the bacteria to phagocytic uptake. This study provides comprehension of concurrent transcriptional responses that occur in GBS and human monocytes that shape the host-pathogen interaction.


Assuntos
Monócitos , Infecções Estreptocócicas , Adulto , Humanos , Camundongos , Animais , Monócitos/metabolismo , Streptococcus agalactiae , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , RNA-Seq , Fagocitose/genética , Interações Hospedeiro-Patógeno/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Int Immunopharmacol ; 113(Pt A): 109413, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461586

RESUMO

Excessive production of reactive oxygen species (ROS) leads to oxidative stress in host cells and affects the progress of disease. Mitochondria are an important source of ROS and their dysfunction is closely related to ROS production. S. uberis is a common causative agent of mastitis. The expression of key enzymes of the mitochondrial apoptotic pathway is increased in mammary epithelial cells after S. uberis stimulation, while expression of proteins related to mitochondrial function is decreased. Drp1, a key protein associated with mitochondrial function, is activated upon infection. Accompanied by mitochondria-cytosol translocation of Drp1, Fis1 expression is significantly upregulated while Mfn1 expression is downregulated implying that the balance of mitochondrial dynamics is disrupted. This leads to mitochondrial fragmentation, decreased mitochondrial membrane potential, higher levels of mROS and oxidative injury. The AMPK activator AICAR inhibits the increased phosphorylation of Drp1 and the translocation of Drp1 to mitochondria by salvaging mitochondrial function in an AMPK/Drp1 dependent manner, which has a similar effect to Drp1 inhibitor Mdivi-1. These data show that AMPK, as an upstream negative regulator of Drp1, ameliorates mitochondrial dysfunction induced by S. uberis infection.


Assuntos
Proteínas Quinases Ativadas por AMP , Dinaminas , Dinâmica Mitocondrial , Infecções Estreptocócicas , Streptococcus , Feminino , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio , Dinaminas/genética , Dinaminas/metabolismo , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/fisiopatologia , Animais , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo
6.
PeerJ ; 10: e14144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36221266

RESUMO

Background: Streptococcus suis is a zoonotic pathogen that can cause invasive infections in humans who are in close contact with infected pigs or contaminated pork-derived products. S. suis serotype 2 sequence type (ST) 1 strains are mostly associated with meningitis, whereas ST104 strains are mostly recovered from sepsis cases in humans. No data are available for comparison of the ST1 and ST104 strains at the genomic level, particularly concerning virulence-associated genes. Thus, genomic comparison of both STs was performed in this study. Methods: An ST1 isolate (ID26154) from the cerebrospinal fluid of a patient with meningitis and an ST104 isolate (ID24525) from the blood of a patient with sepsis were subjected to shotgun pyrosequencing using the 454 GS Junior System. Genomic comparison was conducted between the ST1 isolate and the ST104 isolate using the Artemis Comparison Tool (ACT) to identify the region of differences (RDs) between ST1 and ST104. Results: Fifty-eight RDs were unique to the ST104 genome and were mainly involved in metabolism and cell functional activities, cell wall anchored proteins, bacteriophages and mobile genetic elements, ABC-type transporters, two-component signal transductions, and lantibiotic proteins. Some virulence genes mostly found in ST1 strains were also present in the ST104 genome. Whole-genome comparison is a powerful tool for identifying genomic region differences between different STs of S. suis serotype 2, leading to the identification of the molecular basis of virulence involved in the pathogenesis of the infection.


Assuntos
Sepse , Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Streptococcus suis/genética , Sorogrupo , Infecções Estreptocócicas/genética , Genômica , Sepse/genética
7.
Ecotoxicol Environ Saf ; 245: 114095, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116237

RESUMO

Jade perch (Scortum barcoo) is a freshwater fish with substantial economic value, which has been widely cultivated all over the world. However, with the intensification and expansion of farming, several bacterial and viral diseases have occurred in jade perch. To understand the immune response of jade perch against Streptococcus agalactiae (Group B Streptococcus, GBS), we performed a histopathological examination and transcriptome sequencing of jade perch spleen after artificial bacterial infection. GBS infection can cause structural changes and even necrosis of the jade perch spleen, which may affect the survival of infected individuals. A total of 144,458 unigenes were obtained through de novo assembly of spleen transcriptome. Among them, 1821 unigenes were identified as DEGs, including 1415 up-regulated and 406 down-regulated unigenes in the infection group. Moreover, the analysis of GO and KEGG revealed that many GO terms and pathways were involved in the host immune response, such as Toll-like receptor signaling pathway, Cytokine-cytokine receptor interaction, and TNF signaling pathway. In addition, according to transcriptome data and qRT-PCR analysis, the expression levels of many cytokines that participate in the inflammatory response changed a lot after GBS infection. Overall, this transcriptomic analysis provided valuable information for studying the immune response of jade perch against bacterial infection.


Assuntos
Doenças dos Peixes , Infecções Estreptocócicas , Animais , Citocinas/metabolismo , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Peixes/genética , Perfilação da Expressão Gênica , Imunidade , Receptores de Citocinas/metabolismo , Baço/metabolismo , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/genética , Receptores Toll-Like/metabolismo , Transcriptoma
8.
Sci Rep ; 12(1): 13920, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978073

RESUMO

Streptococcus suis, a common member of the porcine respiratory microbiota, can cause life-threatening diseases in pigs as well as humans. A previous study identified the gene trpX as conditionally essential for in vivo survival by intrathecal infection of pigs with a transposon library of S. suis strain 10. Here, we characterized trpX, encoding a putative tryptophan/tyrosine transport system substrate-binding protein, in more detail. We compared growth capacities of the isogenic trpX-deficient mutant derivative strain 10∆trpX with its parent. Growth experiments in chemically defined media (CDM) revealed that growth of 10∆trpX depended on tryptophan concentration, suggesting TrpX involvement in tryptophan uptake. We demonstrated that trpX is part of an operon structure and co-transcribed with two additional genes encoding a putative permease and ATPase, respectively. Bioinformatics analysis identified a putative tryptophan T-box riboswitch in the 5' untranslated region of this operon. Finally, qRT-PCR and a reporter activation assay revealed trpX mRNA induction under tryptophan-limited conditions. In conclusion, our study showed that TrpX is part of a putative tryptophan ABC transporter system regulated by a T-box riboswitch probably functioning as a substrate-binding protein. Due to the tryptophan auxotrophy of S. suis, TrpX plays a crucial role for metabolic adaptation and growth during infection.


Assuntos
Riboswitch , Infecções Estreptocócicas , Streptococcus suis , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Humanos , Óperon/genética , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/veterinária , Streptococcus suis/metabolismo , Suínos , Triptofano/metabolismo
9.
J Clin Invest ; 132(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36006736

RESUMO

Invasive bacterial infections remain a major cause of human morbidity. Group B streptococcus (GBS) are Gram-positive bacteria that cause invasive infections in humans. Here, we show that factor XIIIA-deficient (FXIIIA-deficient) female mice exhibited significantly increased susceptibility to GBS infections. Additionally, female WT mice had increased levels of FXIIIA and were more resistant to GBS infection compared with isogenic male mice. We observed that administration of exogenous FXIIIA to male mice increased host resistance to GBS infection. Conversely, administration of a FXIIIA transglutaminase inhibitor to female mice decreased host resistance to GBS infection. Interestingly, male gonadectomized mice exhibited decreased sensitivity to GBS infection, suggesting a role for gonadal androgens in host susceptibility. FXIIIA promoted GBS entrapment within fibrin clots by crosslinking fibronectin with ScpB, a fibronectin-binding GBS surface protein. Thus, ScpB-deficient GBS exhibited decreased entrapment within fibrin clots in vitro and increased dissemination during systemic infections. Finally, using mice in which FXIIIA expression was depleted in mast cells, we observed that mast cell-derived FXIIIA contributes to host defense against GBS infection. Our studies provide insights into the effects of sexual dimorphism and mast cells on FXIIIA expression and its interactions with GBS adhesins that mediate bacterial dissemination and pathogenesis.


Assuntos
Fator XIIIa , Infecções Estreptocócicas , Androgênios/metabolismo , Animais , Fator XIIIa/metabolismo , Feminino , Fibrina/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Masculino , Mastócitos/metabolismo , Camundongos , Infecções Estreptocócicas/genética , Streptococcus agalactiae/metabolismo , Transglutaminases/metabolismo
10.
EBioMedicine ; 81: 104133, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35779495

RESUMO

BACKGROUND: Streptococcus dysgalactiae subspecies equisimilis (SDSE) has emerged as an important cause of severe invasive infections including streptococcal toxic shock syndrome (STSS). The present study aimed to identify genes involved in differences in invasiveness between STSS and non-invasive SDSE isolates. METHODS: STSS and non-invasive SDSE isolates were analysed to identify csrS/csrR mutations, followed by a comparative analysis of genomic sequences to identify mutations in other genes. Mutant strains were generated to examine changes in gene expression profiles and altered pathogenicity in mice. FINDINGS: Of the 79 STSS-SDSE clinical isolates, 15 (19.0%) harboured csrS/csrR mutations, while none were found in the non-invasive SDSE isolates. We identified a small RNA (sRNA) that comprised three direct repeats along with an inverted repeat and was transcribed in the same direction as the sagA gene. The sRNA was referred to as srrG (streptolysin S regulatory RNA in GGS). srrG mutations were identified in the STSS-SDSE strains and were found to be associated with elevated expression of the streptolysin S (SLS) gene cluster and enhanced pathogenicity in mice. INTERPRETATION: The csrS/csrR and srrG mutations that increased virulence gene expression in STSS-SDSE isolates were identified, and strains carrying these mutations caused increased lethality in mice. A significantly higher frequency of mutations was observed in STSS-SDSE isolates, thereby highlighting their importance in STSS. FUNDING: Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science (JSPS), and the Ministry of Health, Labor, and Welfare of Japan.


Assuntos
Pequeno RNA não Traduzido , Choque Séptico , Infecções Estreptocócicas , Animais , Genes Reguladores , Camundongos , Mutação , Choque Séptico/genética , Infecções Estreptocócicas/genética , Streptococcus , Estreptolisinas/genética , Virulência/genética
11.
Nat Commun ; 13(1): 4215, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864107

RESUMO

Group B Streptococcus (GBS), or Streptococcus agalactiae, is a pathogen that causes preterm births, stillbirths, and acute invasive neonatal disease burden and mortality. Here, we investigate bacterial genetic signatures associated with disease onset time and meningeal tissue infection in acute invasive neonatal GBS disease. We carry out a genome-wide association study (GWAS) of 1,338 GBS isolates from newborns with acute invasive disease; the isolates had been collected annually, for 30 years, through a national bacterial surveillance program in the Netherlands. After controlling for the population structure, we identify genetic variation within noncoding and coding regions, particularly the capsule biosynthesis locus, statistically associated with neonatal GBS disease onset time and meningeal invasion. Our findings highlight the impact of integrating microbial population genomics and clinical pathogen surveillance, and demonstrate the effect of GBS genetics on disease pathogenesis in neonates and infants.


Assuntos
Doenças do Recém-Nascido , Infecções Estreptocócicas , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Metagenômica , Infecções Estreptocócicas/genética , Streptococcus agalactiae/genética
12.
mBio ; 13(3): e0098522, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35658538

RESUMO

Group B Streptococcus (GBS) is associated with severe infections in utero and in newborn populations, including pneumonia, sepsis, and meningitis. GBS vaginal colonization of the pregnant mother is an important prerequisite for transmission to the newborn and the development of neonatal invasive disease; however, our understanding of the factors required for GBS persistence and ascension in the female reproductive tract (FRT) remains limited. Here, we utilized a GBS mariner transposon (Krmit) mutant library previously developed by our group and identified underrepresented mutations in 535 genes that contribute to survival within the vaginal lumen and colonization of vaginal, cervical, and uterine tissues. From these mutants, we identified 47 genes that were underrepresented in all samples collected, including mtsA, a component of the mtsABC locus, encoding a putative manganese (Mn2+)-dependent ATP-binding cassette transporter. RNA sequencing analysis of GBS recovered from the vaginal tract also revealed a robust increase of mtsA expression during vaginal colonization. We engineered an ΔmtsA mutant strain and found by using inductively coupled plasma mass spectrometry that it exhibited decreased concentrations of intracellular Mn2+, confirming its involvement in Mn2+ acquisition. The ΔmtsA mutant was significantly more susceptible to the metal chelator calprotectin and to oxidative stressors, including both H2O2 and paraquat, than wild-type (WT) GBS. We further observed that the ΔmtsA mutant strain exhibited a significant fitness defect in comparison to WT GBS in vivo by using a murine model of vaginal colonization. Taken together, these data suggest that Mn2+ homeostasis is an important process contributing to GBS survival in the FRT. IMPORTANCE Morbidity and mortality associated with GBS begin with colonization of the female reproductive tract (FRT). To date, our understanding of the factors required for GBS persistence in this environment remain limited. We identified several necessary systems for initial colonization of the vaginal lumen and penetration into the reproductive tissues via transposon mutagenesis sequencing. We determined that mutations in mtsA, the gene encoding a protein putatively involved in manganese (Mn2+) transport, were significantly underrepresented in all in vivo samples collected. We also show that mtsA contributes to Mn2+ acquisition and GBS survival during metal limitation by calprotectin, a metal-chelating protein complex. We further demonstrate that a mutant lacking mtsA is hypersusceptible to oxidative stress induced by both H2O2 and paraquat and has a severe fitness defect compared to WT GBS in the murine vaginal tract. This work reveals the importance of Mn2+ homeostasis at the host-pathogen interface in the FRT.


Assuntos
Manganês , Infecções Estreptocócicas , Animais , Feminino , Genômica , Homeostase , Peróxido de Hidrogênio , Complexo Antígeno L1 Leucocitário , Camundongos , Paraquat , Gravidez , Infecções Estreptocócicas/genética , Streptococcus agalactiae/genética , Vagina
13.
BMC Med ; 20(1): 173, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35505341

RESUMO

BACKGROUND: Necrotising soft tissue infections (NSTIs) are rapidly progressing bacterial infections usually caused by either several pathogens in unison (polymicrobial infections) or Streptococcus pyogenes (mono-microbial infection). These infections are rare and are associated with high mortality rates. However, the underlying pathogenic mechanisms in this heterogeneous group remain elusive. METHODS: In this study, we built interactomes at both the population and individual levels consisting of host-pathogen interactions inferred from dual RNA-Seq gene transcriptomic profiles of the biopsies from NSTI patients. RESULTS: NSTI type-specific responses in the host were uncovered. The S. pyogenes mono-microbial subnetwork was enriched with host genes annotated with involved in cytokine production and regulation of response to stress. The polymicrobial network consisted of several significant associations between different species (S. pyogenes, Porphyromonas asaccharolytica and Escherichia coli) and host genes. The host genes associated with S. pyogenes in this subnetwork were characterised by cellular response to cytokines. We further found several virulence factors including hyaluronan synthase, Sic1, Isp, SagF, SagG, ScfAB-operon, Fba and genes upstream and downstream of EndoS along with bacterial housekeeping genes interacting with the human stress and immune response in various subnetworks between host and pathogen. CONCLUSIONS: At the population level, we found aetiology-dependent responses showing the potential modes of entry and immune evasion strategies employed by S. pyogenes, congruent with general cellular processes such as differentiation and proliferation. After stratifying the patients based on the subject-specific networks to study the patient-specific response, we observed different patient groups with different collagens, cytoskeleton and actin monomers in association with virulence factors, immunogenic proteins and housekeeping genes which we utilised to postulate differing modes of entry and immune evasion for different bacteria in relationship to the patients' phenotype.


Assuntos
Coinfecção , Infecções dos Tecidos Moles , Infecções Estreptocócicas , Coinfecção/genética , Humanos , Infecções dos Tecidos Moles/genética , Infecções dos Tecidos Moles/microbiologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Fatores de Virulência/genética
14.
J Fish Biol ; 101(3): 431-440, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35542985

RESUMO

The CXC chemokine receptors (CXCRs) are members of the seven transmembrane (7-TM) G-protein-coupled receptor superfamily that involves innate and adaptive immune systems. In this study, CXCR3a and CXCR3b from Nile tilapia (Oreochromis niloticus) were cloned and identified, designated as OnCXCR3a and OnCXCR3b. The open reading frames of OnCXCR3a and OnCXCR3b were 1074 and 1080 bp, encoding the predicted proteins of 357 and 359 amino acids, respectively. Multiple alignment analysis of OnCXCR3a- and OnCXCR3b-deduced protein sequences with the mammalian and bird sequences indicated the presence of typical structural features of chemokine receptors, including a 7-TM domain and conserved motifs. Quantitative real-time PCR analysis revealed that OnCXCR3a and OnCXCR3b were constitutively expressed in a wide range of tissues. When stimulated with Streptococcus agalactiae, Aeromonas hydrophila, polyinosinic:polycytidylic acid and lipopolysaccharide in vivo or in vitro on leukocytes, the mRNA levels of OnCXCR3a and OnCXCR3b were significantly upregulated. Overall, these results indicated that OnCXCR3s might be involved in host immune responses in Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Ciclídeos/metabolismo , Clonagem Molecular , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , Mamíferos , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/veterinária
15.
Sci Rep ; 12(1): 2800, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181690

RESUMO

Streptococcus mutans, a major pathogen of dental caries, is also known as a causative agent of cardiovascular disease. A 120 kDa collagen-binding protein (Cnm) of S. mutans is an important contributor to the pathogenicity of cardiovascular disease. Although dead bacteria have been detected in cardiovascular specimens by molecular biological methods, the pathogenicity of the bacteria remains unknown. Here, we analyzed the pathogenicity of killed S. mutans by focusing on collagen-binding ability and the effects on silkworms. In live S. mutans, Cnm-positive S. mutans had high collagen-binding activity, while Cnm-negative S. mutans had no such activity. After treatment with killed Cnm-positive S. mutans, amoxicillin-treated bacteria still had collagen-binding ability, while lysozyme-treated bacteria lost this ability. When live and amoxicillin-treated S. mutans strains were administered to silkworms, the survival rates of the silkworms were reduced; this reduction was more pronounced in Cnm-positive S. mutans infection than in Cnm-negative S. mutans infection. However, the administration of any of the lysozyme-treated bacteria did not reduce the survival rate of the silkworms. These results suggest that amoxicillin-killed Cnm-positive S. mutans strains maintain collagen-binding properties and pathogenicity in the silkworm model, and are possibly associated with pathogenicity in cardiovascular diseases.


Assuntos
Adesinas Bacterianas/genética , Bombyx/genética , Proteínas de Transporte/genética , Cárie Dentária/genética , Streptococcus mutans/genética , Amoxicilina/farmacologia , Animais , Bombyx/microbiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/microbiologia , Colágeno/genética , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Modelos Animais de Doenças , Humanos , Muramidase/farmacologia , Saliva/microbiologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , Streptococcus mutans/patogenicidade , Virulência/genética
16.
Microbiol Spectr ; 10(1): e0218621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196804

RESUMO

Pore-forming toxins (PFTs) are commonly produced by pathogenic bacteria, and understanding them is key to the development of virulence-targeted therapies. Streptococcus agalactiae, or group B Streptococcus (GBS), produces several factors that enhance its pathogenicity, including the PFT ß-hemolysin/cytolysin (ßhc). Little is understood about the cellular factors involved in ßhc pore formation. We conducted a whole-genome CRISPR-Cas9 forward genetic screen to identify host genes that might contribute to ßhc pore formation and cell death. While the screen identified the established receptor, CD59, in control experiments using the toxin intermedilysin (ILY), no clear candidate genes were identified that were required for ßhc-mediated lethality. Of the top targets from the screen, two genes involved in membrane remodeling and repair represented candidates that might modulate the kinetics of ßhc-induced cell death. Upon attempted validation of the results using monoclonal cell lines with targeted disruption of these genes, no effect on ßhc-mediated cell lysis was observed. The CRISPR-Cas9 screen results are consistent with the hypothesis that ßhc does not require a single nonessential host factor to mediate target cell death. IMPORTANCE CRISPR-Cas9 forward genetic screens have been used to identify host cell targets required by bacterial toxins. They have been used successfully to both verify known targets and elucidate novel host factors required by toxins. Here, we show that this approach fails to identify host factors required for cell death due to ßhc, a toxin required for GBS virulence. These data suggest that ßhc may not require a host cell receptor for toxin function or may require a host receptor that is an essential gene and would not be identified using this screening strategy.


Assuntos
Proteínas Hemolisinas/toxicidade , Perforina/toxicidade , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/fisiopatologia , Streptococcus agalactiae/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Sistemas CRISPR-Cas , Morte Celular , Linhagem Celular , Genoma Bacteriano , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Perforina/metabolismo , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/genética
17.
Fish Shellfish Immunol ; 122: 13-20, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051565

RESUMO

Mammals TRAF2 played a dual role in several immune signaling transduction processes. In this study, TRAF2 was cloned from Nile tilapia, Oreochromis niloticus, which named OnTRAF2. The open reading frame was 1797 bp, encoding 598 amino acids. Amino acid alignment and phylogenetic analysis indicated that OnTRAF2 showed relatively low identify with other teleost TRAF2 proteins, with the exception of TRAF2s from Epinephelus coioides. In healthy tilapia, OnTRAF2 was expressed widely in all the examined tissues, which had highest expression level in the brain. After Streptococcus agalactiae infection, the expression level of OnTRAF2 was increased significantly at different times in several organs, implying that OnTRAF2 may be involved in host defense against S. agalactiae infection. The result of subcellular localization showed that OnTRAF2 presented in cytoplasm and nucleus of HEK293T cells. Additionally, overexpression of OnTRAF2 significantly decreased the transcriptional activity of the NF-κB reporter in HEK293T cells, yeast two-hybrid results revealed that OnTRAF2 had no interaction with E3 ubiquitin ligase OnNEDD4. These results indicated that OnTRAF2 played important function during bacterial infection, and negatively mediated the immune signaling transduction in Nile tilapia, while the mechanism need further study.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Proteínas de Peixes , Regulação da Expressão Gênica , Células HEK293 , Humanos , Mamíferos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Filogenia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
Sci Rep ; 11(1): 23919, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907269

RESUMO

Streptococcus suis has been well-recognized as a zoonotic pathogen worldwide, and the diversity and unpredictable adaptive potential of sporadic human strains represent a great risk to the public health. In this study, S. suis LSM178, isolated from a patient in contact with pigs and raw pork, was assessed as a hyper-virulent strain and interpreted for the virulence based on its genetic information. The strain was more invasive for Caco-2 cells than two other S. suis strains, SC19 and P1/7. Sequence analysis designated LSM178 with serotype 2 and a novel sequence type 1005. Phylogenetic analysis showed that LSM178 clustered with highly virulent strains including all human strains and epidemic strains. Compared with other strains, these S. suis have the most and the same virulent factors and a type I-89 K pathogenicity island. Further, groups of genes were identified to distinguish these highly virulent strains from other generally virulent strains, emphasizing the key roles of genes modeling transcription, cell barrier, replication, recombination and repair on virulence regulation. Additionally, LSM178 contains a novel prophage conducive potentially to pathogenicity.


Assuntos
Genoma Bacteriano , Ilhas Genômicas , Filogenia , Infecções Estreptocócicas , Streptococcus suis , Fatores de Virulência , Animais , Humanos , Análise de Sequência de DNA , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo , Streptococcus suis/genética , Streptococcus suis/isolamento & purificação , Streptococcus suis/metabolismo , Streptococcus suis/patogenicidade , Suínos , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
19.
PLoS One ; 16(12): e0252973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34860840

RESUMO

Camels are vital to food production in the drylands of the Horn of Africa, with milk as their main contribution to food security. A major constraint to camel milk production is mastitis, inflammation of the mammary gland. The condition negatively impacts milk yield and quality as well as household income. A leading cause of mastitis in dairy camels is Streptococcus agalactiae, or group B Streptococcus (GBS), which is also a commensal and pathogen of humans and cattle. It has been suggested that extramammary reservoirs for this pathogen may contribute to the occurrence of mastitis in camels. We explored the molecular epidemiology of GBS in camels using a cross-sectional study design for sample collection and phenotypic, genomic and phylogenetic analysis of isolates. Among 88 adult camels and 93 calves from six herds in Laikipia County, Kenya, GBS was detected in 20% of 50 milk samples, 25% of 152 nasal swabs, 8% of 90 oral swabs and 3% of 90 rectal swabs, but not in vaginal swabs. Per camel herd, two to four sequence types (ST) were identified using Multi Locus Sequence Typing (MLST). More than half of the isolates belonged to ST617 or its single-locus variant, ST1652, with these STs found across all sample types. Capsular serotype VI was detected in 30 of 58 isolates. In three herds, identical STs were detected in milk and swab samples, suggesting that extramammary sources of GBS may contribute to the maintenance and spread of GBS within camel herds. This needs to be considered when developing prevention and control strategies for GBS mastitis. The high nasal carriage rate, low recto-vaginal carriage rate, and high prevalence of serotype VI for GBS in camels are in stark contrast to the distribution of GBS in humans and in cattle and reveal hitherto unknown ecological and molecular features of this bacterial species.


Assuntos
Camelus/microbiologia , Infecções Estreptocócicas , Streptococcus agalactiae , Animais , Feminino , Humanos , Quênia/epidemiologia , Masculino , Glândulas Mamárias Animais/microbiologia , Leite/microbiologia , Tipagem de Sequências Multilocus , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/classificação , Streptococcus agalactiae/crescimento & desenvolvimento
20.
Sci Rep ; 11(1): 19011, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561464

RESUMO

Group A Streptoccocus (GAS) is among the most diverse of all human pathogens, responsible for a range of clinical manifestations, from mild superficial infections such as pharyngitis to serious invasive infections such as necrotising fasciitis and sepsis. The drivers of these different disease phenotypes are not known. The GAS cholesterol-dependent cytolysin, Streptolysin O (SLO), has well established cell and tissue destructive activity. We investigated the role of SLO in determining disease outcome in vivo, by using two different clinical lineages; the recently emerged hypervirulent outbreak emm type 32.2 strains, which result in sepsis, and the emm type 1.0 strains which cause septic arthritis. Using clinically relevant in vivo mouse models of sepsis and a novel septic arthritis model, we found that the amount and activity of SLO was vital in determining the course of infection. The emm type 32.2 strain produced large quantities of highly haemolytic SLO that resulted in rapid development of sepsis. By contrast, the reduced concentration and lower haemolytic activity of emm type 1.0 SLO led to translocation of bacteria from blood to joints. Importantly, sepsis associated strains that were attenuated by deletion or inhibition of SLO, then also translocated to the joint, confirming the key role of SLO in determining infection niche. Our findings demonstrate that SLO is key to in vivo phenotype and disease outcome. Careful consideration should be given to novel therapy or vaccination strategies that target SLO. Whilst neutralising SLO activity may reduce severe invasive disease, it has the potential to promote chronic inflammatory conditions such as septic arthritis.


Assuntos
Fenótipo , Infecções Estreptocócicas/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Estreptolisinas/metabolismo , Animais , Artrite Infecciosa/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Translocação Bacteriana , Modelos Animais de Doenças , Fasciite Necrosante/microbiologia , Humanos , Camundongos , Terapia de Alvo Molecular , Faringite/microbiologia , Prognóstico , Sepse/microbiologia , Infecções Estreptocócicas/terapia , Estreptolisinas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...